Topic 3 – Moles Revision Notes

1. Moles

- In Chemistry, amounts are measured in moles
- A mole contains 6.02 x 10²³ particles. Particles can be atoms, molecules, ions or electrons
- For a solution, moles = concentration x volume/1000 (volume in cm³)

2. Reacting Mass Calculations

Step 1 - Find the number of moles of the thing you are told about Step 2 – Use the equation to find out the moles of the thing you are asked about.

Step 3 – Find the mass of the thing you are asked about.

Example

Work out the mass of HCl formed from 6.0g of hydrogen

 ${\rm H_2}\,+\,{\rm CI_2}\rightarrow 2{\rm HCI}$

Step 1: Moles $H_2 = 6.0 \div 2.0 = 3.0$ (mass \div molar mass)Step 2: Moles HCI = $3.0 \times 2/1$ (from equation) = 6.0Step 3: Mass HCI = $6.0 \times$ molar mass = $6 \times 36.5 = 219g$ (moles x molar mass)

3. <u>Titration Calculations</u>

- Concentration is usually measured in moles of solute per cubic decimetre of solution, mol dm⁻³
- A cubic decimetre, 1dm³, has the same volume as a litre i.e. 1000cm³
- The volume of a solution is often measured in cm³. This needs to be converted to dm³ by dividing by 1000 before calculating a concentration in mol dm⁻³

Step 1 - Find the number of moles of the thing you know the concentration and volume of.
Step 2 – Use the equation to find out the moles of the thing you are asked about.
Step 3 – Find the unknown concentration or molar mass

Example

25 cm³ of NaOH needed 21.5 cm³ of 0.1 mol dm⁻³ H_2SO_4 for neutralisation. Calculate the concentration of the NaOH solution.

 $H_2SO_4 + 2NaOH \rightarrow 2NaCI + 2H_2O$

```
Step 1: Moles H_2SO_4 = 0.1 \times 21.5 \div 1000 = 2.15 \times 10^{-3} (conc x vol \div 1000)
Step 2: Moles NaOH = 2.15 x 10<sup>-3</sup> x 2 (from equation) = 4.30 x 10<sup>-3</sup>
Step 3: Conc NaOH = 4.30 x 10<sup>-3</sup> \div (25 \div 1000) = 0.172 mol dm<sup>-3</sup> (moles \div volume in dm<sup>3</sup>)
```

4. Ideal Gas Equation

The ideal gas equation is:

$$PV = nRT$$

Where: P = pressure in Pa

 $V = volume in m^3$ (1 m³ = 10³ dm³ = 10⁶ cm³)

n = number of moles

 $R = gas constant (8.31 J K^{-1} mol^{-1})$

T = Kelvin temperature (°C + 273)

Example

0.166 mol of oxygen is in a sealed container whose volume is 1725 cm³. The temperature is 300 K. Calculate the pressure of the oxygen inside the container. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)

For a fixed number of moles of gas, the ideal gas equation reduces to:

$P_1V_1/T_1 = P_2V_2/T_2$

This version can be used to calculate the effect of changes in P, V or T on such a sample.

The ideal gas equation can be combined with $n = m/M_r$ or with ρ (density) = m/V

$PV = mRT/M_r$

$$P = \rho RT/M_r$$

If these versions are used, mass must be in grams and density in g m⁻³

5) <u>Percentage yield</u>

- Most organic reactions do not give 100% conversion of reactant to product
 - Reasons for this include the fact that most organic reactions are reversible, there may be side products and there will be loss of the desired product during purification

% yield = <u>Actual moles of product</u> x 100% Possible moles of product

Example

•

In the following reaction, 2.18g of bromoethane produce 0.75g of ethanol. Calculate the percentage yield.

$CH_3CH_2Br + NaOH \rightarrow CH_3CH_2OH + NaBr$

Moles of reactant (bromoethane)	= mass/molar mass
	= 2.18/109
	0.000 mal
	= 0.020 mol
Possible moles of ethanol	= 0.020 mol (from equation)
Actual moles of ethanol	= 0.75/46.0
	= 0.0163 mol
Percentage yield	= 0.0163/0.020 x 100%
5 5	= 82%

6) <u>Ionic equations</u>

- Ionic equations leave out ions that are unchanged in a reaction. They give a clearer picture of what is happening in a reaction
- To go from a symbol equation to an ionic equation:
 - Split up anything that is (aq) and ionic (acids, alkalis and salts)
 - o Cancel ions that are on both sides

Example

Symbol equation:	$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$
Split up into ions:	H⁺(aq) + Cl⁻(aq) + Na⁺(aq) + OH⁻(aq) → Na⁺(aq) + Cl⁻(aq) + H₂O(l)
Cancel Na ⁺ & Cl ⁻ :	$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$